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Chapter 1

Introduction

The present lecture notes introduce some preliminary and simple notions of
Econometrics for undergraduate students. They can be viewed as a helpful
contribution for very short courses in Econometrics, where the basic topics are
presented, endowed with some theoretical insights and some worked examples.
To lighten the treatment, the basic notions of linear algebra and statistical in-
ference and the mathematical optimization methods will be omitted. The basic
(first year) courses of Mathematics and Statistics contain the necessary prelim-
inary notions to be known. Furthermore, the overall level is not advanced: for
any student (either undergraduate or graduate) or scholar willing to proceed
with the study of these intriguing subjects, my clear advice is to read and study
a more complete textbook.

There are several accurate and exhaustive textbooks, at different difficulty
levels, among which I will cite especially [4], [3] and the most exhaustive one,
Econometric Analysis by William H. Greene [1]. For a more macroeconomic
approach, see Wooldridge [5, 6].

For all those who approach this discipline, it would be interesting to ’de-
fine it’ somehow. In his world famous textbook [1], Greene quotes the first
issue of Econometrica (1933), where Ragnar Frisch made an attempt to charac-
terize Econometrics. In his own words, the Econometric Society should ’ pro-
mote studies that aim at a unification of the theoretical-quantitative and the
empirical-quantitative approach to economic problems’. Moreover: ’Experience
has shown that each of these three viewpoints, that of Statistics, Economic The-
ory, and Mathematics, is a necessary, but not a sufficient, condition for a real
understanding of the quantitative relations in modern economic life. It is the
unification of all three that is powerful. And it is this unification that constitutes
Econometrics.’.
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6 CHAPTER 1. INTRODUCTION

Although this opinion is 85 years old, it is perfectly shareable. Econometrics
relies upon mathematical techniques, statistical methods and financial and eco-
nomic expertise and knowledge. I hope that these lecture notes will be useful to
clarify the nature of this discipline and to ease comprehension and solutions of
some basic problems.



Chapter 2

The regression model

When we have to fit a sample regression to a scatter of points, it makes sense to
determine a line such that the residuals, i.e. the differences between each actual
value of yi and the correspondent predicted value ŷi are as small as possible. We
will treat separately the easiest case, when only 2 parameters are involved and
the regression line can be drawn in the 2-dimensional space, and the multivariate
case, where N > 2 variables appear, and N regression parameters have to be
estimated. In the latter case, some Linear Algebra will be necessary to derive
the basic formula. Note that sometimes the independent variables such as xi
are called covariates (especially by statisticians), regressors or explanatory
variables, whereas the dependent ones such as yi are called regressands or
explained variables.

Basically, the most generic form of the linear regression model is

y = f(x1, x2, . . . , xN ) + ε = β1 + β2x2 + · · ·+ βNxN + ε. (2.0.1)

We will use α and β in the easiest case with 2 variables. It is important to briefly
discuss the role of ε, which is a disturbance. A disturbance is a further term
which ’disturbs’ the stability of the relation. There can be several reasons for the
presence of a disturbance: errors of measurement, effects caused by some inde-
terminate economic variable or simply by something which cannot be captured
by the model.

2.1 Ordinary least squares (OLS) estimation method:
two-variable case

In the bivariate case, suppose that we have a dataset on variable y and on
variable x. The data are collected in a sample of observations, say N different
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8 CHAPTER 2. THE REGRESSION MODEL

observations, on units indexed by i = 1, . . . , N . Our aim is to approximate the
value of y by a linear combination ŷ = α+βx, where α and β are real constants
to be determined. The i-th square residual ei is given by

ei = yi − ŷi = yi − α− βxi,

and the procedure consists in the minimization of the sum of squared residuals.
Call S(α, β) the function of the parameters indicating such a sum of squares, i.e.

S(α, β) =
N∑
i=1

e2i =
N∑
i=1

(yi − α− βxi)2 . (2.1.1)

The related minimization problem is unconstrained. It reads as

min
α, β

S(α, β), (2.1.2)

and the solution procedure obviously involves the calculation of the first order
derivatives. The first order conditions (FOCs) are:

−2
N∑
i=1

(yi − α− βxi) = 0 =⇒
N∑
i=1

yi −Nα− β
N∑
i=1

xi = 0.

−2

N∑
i=1

(yi − α− βxi)xi = 0 =⇒
N∑
i=1

xiyi − α
N∑
i=1

xi − β
N∑
i=1

x2i = 0.

After a rearrangement, these 2 equations are typically referred to as normal
equations of the 2-variable regression model:

N∑
i=1

yi = Nα+ β

N∑
i=1

xi, (2.1.3)

N∑
i=1

xiyi = α

N∑
i=1

xi + β

N∑
i=1

x2i . (2.1.4)

Solving (2.1.3) for α yields:

α =

∑N
i=1 yi − β

∑N
i=1 xi

N
= y − βx, (2.1.5)

after introducing the arithmetic means: x =

∑N
i=1 xi
N

, y =

∑N
i=1 yi
N

.
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Plugging (2.1.5) into (2.1.4) amounts to:

N∑
i=1

xiyi − (y − βx)Nx− β
N∑
i=1

x2i = 0,

hence β can be easily determined:

N∑
i=1

xiyi −Nx · y + β

(
Nx2 −

N∑
i=1

x2i

)
= 0 =⇒

=⇒ β =

∑N
i=1 xiyi −Nx · y∑N
i=1 x

2
i −Nx2

, (2.1.6)

and consequently, inserting (2.1.6) into (2.1.5), we achieve:

α = y −
x
∑N

i=1 xiyi −Nx2 · y∑N
i=1 x

2
i −Nx2

. (2.1.7)

The regression line is given by:

ŷ = α+ βx, (2.1.8)

meaning that for each value of x, taken from a sample, ŷ predicts the correspond-
ing value of y. The residuals can be evaluated as well, by comparing the given
values of y with the ones that would be predicted by taking the given values of
x.

It is important to note that β can be also interpreted from the viewpoint
of probability, when looking upon both x and y as random variables. Dividing
numerator and denominator of (2.1.6) by N yields:

=⇒ β =

∑N
i=1 xiyi
N

− x · y∑N
i=1 x

2
i

N
− x2

=
Cov(x, y)

V ar(x)
, (2.1.9)

after applying the 2 well-known formulas:

Cov(x, y) = E[x · y]− E[x]E[y], V ar(x) = E[x2]− (E[x])2 .

There exists another way to indicate β, by further manipulating (2.1.6). Since

N∑
i=1

xiyi −Nx · y =

N∑
i=1

xiyi −Nx · y +Nx · y −Nx · y =
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=
N∑
i=1

xiyi − x
N∑
i=1

yi − y
N∑
i=1

xi +Nx · y =
N∑
i=1

(xi − x)(yi − y)

and

N∑
i=1

x2i −Nx2 =

N∑
i=1

x2i +Nx2 − 2Nx · x =

N∑
i=1

x2i +

N∑
i=1

x2 − 2x

N∑
i=1

xi =

=

N∑
i=1

(xi − x)2,

β can also be reformulated as follows:

β =

∑N
i=1(xi − x)(yi − y)∑N

i=1(xi − x)2
. (2.1.10)

The following Example illustrates an OLS and the related assessment of the
residuals.

Example 1. Consider the following 6 points in the (x, y) plane, which corre-
spond to 2 samples of variables x and y:

P1 = (0.3, 0.5), P2 = (0.5, 0.7), P3 = (1, 0.5),

P4 = (1.5, 0.8), P5 = (0.8, 1), P6 = (0.7, 1.5).

Figure 1. The given scatter of points.

-
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Let us cal-
culate the regression parameters α and β with the help of formulas (2.1.7) and
(2.1.6) to determine the regression line: Since

x =
0.3 + 0.5 + 1 + 1.5 + 0.8 + 0.7

6
= 0.8, y =

0.5 + 0.7 + 0.5 + 0.8 + 1 + 1.5

6
= 0.83,
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we obtain:

α = 0.83−

0.8(0.3 · 0.5 + 0.5 · 0.7 + 1 · 0.5 + 1.5 · 0.8 + 0.8 · 1 + 0.7 · 1.5)− 6 · (0.8)2 · 0.83

(0.3)2 + (0.5)2 + 12 + (1.5)2 + (0.8)2 + (0.7)2 − 6 · (0.8)2
=

= 0.7877.

β =
0.3 · 0.5 + 0.5 · 0.7 + 1 · 0.5 + 1.5 · 0.8 + 0.8 · 1 + 0.7 · 1.5− 6 · 0.8 · 0.83

(0.3)2 + (0.5)2 + 12 + (1.5)2 + (0.8)2 + (0.7)2 − 6 · (0.8)2
= 0.057,

hence the regression line is:

y = 0.057x+ 0.7877.

Figure 2. The regression line.

-
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y = 0.057x+ 0.7877

We can
also calculate all the residuals ei, i.e. the differences between yi and ŷi, and their
squares e2i as well.

i yi ŷi ei e2i
1 0.5 0.8048 −0.3048 0.0929

2 0.7 0.8162 −0.1162 0.0135

3 0.5 0.8447 −0.3447 0.1188

4 0.8 0.8732 −0.0732 0.0053

5 1 0.8333 0.1667 0.0277

6 1.5 0.8276 0.6724 0.4521

Note that the sum of the squares of the residuals is
∑6

i=1 e
2
i = 0.7103. More-

over, the larger contribution comes from point P6, as can be seen from Figure 2,
whereas P2 and P4 are ’almost’ on the regression line.
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2.2 Assessment of the goodness of fit

Every time we carry out a regression, we need a measure of the fit of the obtained
regression line to the data. We are going to provide the definitions of some
quantities that will be useful for this purpose:

• Total Sum of Squares:

SST =
N∑
i=1

(yi − y)2.

• Regression Sum of Squares:

SSR =

N∑
i=1

(ŷi − y)2.

• Error Sum of Squares:

SSE =
N∑
i=1

(ŷi − yi)2.

The 3 above quantities are linked by the straightforward relation we are going
to derive. Since we have:

yi − y = yi − ŷi + ŷi − y =⇒ (yi − y)2 = (yi − ŷi + ŷi − y)2 =

= (yi − ŷi)2 + (ŷi − y)2 + 2(yi − ŷi)(ŷi − y).

Summing over N terms yields:

N∑
i=1

(yi − y)2 =
N∑
i=1

(yi − ŷi)2 +
N∑
i=1

(ŷi − y)2 + 2
N∑
i=1

(yi − ŷi)(ŷi − y).

Now, let us take the last term in the right-hand side into account. Relying on
the OLS procedure, we know that:

2

N∑
i=1

(yi− ŷi)(ŷi−y) = 2

N∑
i=1

(yi− ŷi)(α+βxi−α−βx) = 2β

N∑
i=1

(yi− ŷi)(xi−x) =

= 2β

N∑
i=1

(yi − ŷi + y − y)(xi − x) = 2β

N∑
i=1

(yi − α− βxi + α+ βx− y)(xi − x)
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= 2β
N∑
i=1

(yi−y−β(xi−x))(xi−x) = 2β

[
N∑
i=1

(yi − y)(xi − x)− β
N∑
i=1

(xi − x)2

]
=

= 2β

[
N∑
i=1

(yi − y)(xi − x)−
∑N

j=1(xj − x)(yj − y)∑N
j=1(xj − x)2

·
N∑
i=1

(xi − x)2

]
= 0,

after employing expression (2.1.10) to indicate β. Since the above term vanishes,
we obtain:

N∑
i=1

(yi − y)2 =
N∑
i=1

(yi − ŷi)2 +
N∑
i=1

(ŷi − y)2,

then the following relation holds:

SST = SSE + SSR.

Now we can introduce a coefficient which is helpful to assess the closeness of fit:
the coefficient of determination R2 ∈ (0, 1).

R2 =
SSR

SST
=

∑N
i=1(ŷi − y)2∑N
i=1(yi − y)2

= β2
∑N

i=1(xi − x)2∑N
i=1(yi − y)2

.

An equivalent formulation of R2 is the following one:

R2 = 1− SSE

SST
= 1−

∑N
i=1(ŷi − yi)2∑N
i=1(yi − y)2

.

The regression line fits the scatter of points better as close as R2 is to 1. We can
calculate R2 in the previous Example, obtaining the value: R2 = 0.004.

2.3 Ordinary least squares (OLS) estimation method:
multiple variable case

When N > 2, we are in a standard scenario, because typically more than 2
variables are involved in an economic relationship. The standard linear equation
that we are faced with reads as:

y = β1 + β2x2 + β3x3 + · · ·+ βNxN + ε, (2.3.1)

where we chose not to use x1 to leave the intercept alone, and ε represents the
above-mentioned disturbance. Another possible expression of the same equation
is:

y = β1x1 + β2x2 + β3x3 + · · ·+ βNxN + ε. (2.3.2)
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In (2.3.1) there are N regression parameters to be estimated. Taking the expec-
tations and assuming E(ε) = 0, we have:

E[y] = β1 + β2x2 + β3x3 + · · ·+ βNxN , (2.3.3)

which is usually indicated as the population regression equation. In (2.3.3)
β1 is the intercept and β2, . . . , βN are the regression slope parameters.
Suppose that our sample is composed of M observations for the explanatory
variables xi. We can write the values in the i-th observations as:

yi, x2i, x3i, . . . , xNi.

For all i = 1, . . . ,M , we have:

yi = β1 + β2x2i + · · ·+ βNxNi + εi,

or, in simple matrix form:

Y = Xβ + ε, (2.3.4)

where Y , β and ε are the following vectors:

Y =


y1
y2
...
...
yM

 , β =


β1
β2
...
βN

 , ε =


ε1
ε2
...
...
εM

 .

On the other hand, X is the following M ×N matrix:

X =



1 x21 x31 · · · xN1

1 x22 · · · · · · xN2

...
...

...
...

...
1 x2M · · · · · · xNM


.

If β̂1, . . . , β̂N are estimated values of the regression parameters, then ŷ is the
predicted value of y. Also here residuals are ei = yi − ŷi, and e is the vector
collecting all the residuals. We have

Y = Ŷ + e ⇐⇒ e = Y −Xβ̂.
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Also in this case we use OLS, so we are supposed to minimize the sum of the
squares of the residuals S =

∑N
i=1 e

2
i . We can employ the standard properties of

Linear Algebra to achieve the following form (T indicates transpose):

S = eT e =
(
Y −Xβ̂

)T (
Y −Xβ̂

)
=
(
Y T − β̂TXT

)(
Y −Xβ̂

)
=

= Y TY − β̂TXTY − Y TXβ̂ + β̂TXTXβ̂ =

= Y TY − 2β̂TXTY + β̂TXTXβ̂,

because they are all scalars, as is simple to check (eT e is a scalar product). The

2 negative terms have been added because β̂TXTY =
(
Y TXβ̂

)T
.

As in the 2-variables case, the next step is the differentiation of S with respect
to β̂, i.e. N distinct FOCs which can be collected in a unique vector of normal
equations:

∂S

∂β̂
= −2XTY + 2XTXβ̂ = 0. (2.3.5)

The relation (2.3.5) can be rearranged to become:

XTXβ̂ = XTY =⇒
(
XTX

)−1
XTXβ̂ =

(
XTX

)−1
XTY,

which can be solved for β̂ to achieve the formula which is perhaps the most
famous identity in Econometrics:

β̂ =
(
XTX

)−1
XTY. (2.3.6)

Clearly, the matrix XTX must be non-singular, and the determination of its
inverse may need a long and computationally costly procedure.

In the next Example, we are going to employ (2.3.6) in a simple case where
the regression parameters are only 3 and the observations are 3 as well, to avoid
excessive calculations.

Example 2. Suppose that we have 3 observations of the 2 explanatory variables
X2 and X3. The samples are collected in the following column vectors: where
Y , β and ε are the following vectors:

Y =

 2
1
1

 , X2 =

 0
1
−1

 , X3 =

 1
−2
0

 ,

hence the matrix X is:

X =

 1 0 1
1 1 −2
1 −1 0

 .
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The regression line will have the following form:

Ŷ = β̂1 + β̂2X2 + β̂3X3.

By formula (2.3.6), the column vector β̂ is determined by:

β̂ =
(
XTX

)−1
XTY =

=

 1 1 1
0 1 −1
1 −2 0

 1 0 1
1 1 −2
1 −1 0

−1 ·
 1 1 1

0 1 −1
1 −2 0

 ·
 2

1
1

 =

=

 3 0 −1
0 2 −2
−1 −2 5

−1 ·
 1 1 1

0 1 −1
1 −2 0

 ·
 2

1
1

 .

Now the calculation of the inverse of the above matrix must be carried out (it
is invertible because its determinant is 16). There are some methods that can
be found in any basic Linear Algebra textbook1. When the dimensions of the
involved matrices are higher and the regressions are run by a software such as
Matlab or Stata, there are built-in packages or add-ons that can do the task.
However, after the calculation, we find that 3 0 −1

0 2 −2
−1 −2 5

−1 =

 3/8 1/8 1/8
1/8 7/8 3/8
1/8 3/8 3/8

 ,

as is immediate to verify.
Finally, we can identify the regression parameters: β̂1

β̂2
β̂3

 =

 3/8 1/8 1/8
1/8 7/8 3/8
1/8 3/8 3/8

 ·
 1 1 1

0 1 −1
1 −2 0

 ·
 2

1
1

 =

=

 1/2 1/4 1/4
1/2 1/4 −3/4
1/2 −1/4 −1/4

 ·
 2

1
1

 =

 3/2
1/2
1/2

 ,

consequently the regression equation turns out to be:

Ŷ = 1.5 + 0.5X2 + 0.5X3.
1Otherwise, I suggest to take a look at the clear and simple Notes by Prof. Paul Smith:

https : //sites.math.washington.edu/ smith/Teaching/308/308notes.pdf
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2.4 Assumptions for classical regression models

Typically, some assumptions are made on the explanatory variables and on the
disturbances in the regression models. Such assumptions are not always the
same, as can be seen by comparing different approaches. We are going to refer
to the list of assumptions proposed by Greene (see [1], p. 56), augmenting it
with a brief explanation on their meaning and importance. The first trivial
assumption, which is not listed generally, concerns the values of x in the sample.
We assume that there are some variations in each sample, meaning that for
all h = 2, . . . , N , there exist at least 2 different values, i.e. i 6= j such that
xhi 6= xhj . If this assumption is not verified, there are some variables which are
actually constant.

Assumptions involving the explanatory variables

• (1A) - Linearity: a linear relationship is specified between explained and
explanatory variables, i.e. (2.3.1) or (2.3.2);

• (1B) - Full rank: no exact linear relationship exists among any of the
model’s explanatory variables;

• (1C) - Data generation: the data collected in the independent variables
can be either constants or random variables or a mixture of both;

Assumption (1A) intends to establish the validity of the regression equation,
whereas assumption (1B) means that no further constraints have to be taken
into account (clearly, any linear relation among explanatory variables would be
equivalent to the redundancy of some variables, so the system should be reduced.

On the other hand, assumption (1C) states that analysis is carried out condi-
tionally on the observed values of X, so hence the outcome will not be influenced
by the specific nature of the values (either fixed constants or random draws from
a stochastic process).

We also have to consider 4 assumptions on all the disturbances, that are
listed as follows.

Assumptions involving the disturbances
It is assumed that for all i = 1, . . . , N , the disturbances εi:

• (2A) - Exogeneity of the independent variables: E[εi] = 0 and
E[εi | X] = 0;

• (2B) - Homoscedasticity2: V ar(εi) = E[εi − E[εi]]
2 = σ2 = constant;

moreover V ar[εi|X] = σ2 = constant;

2Sometimes the word Homoskedasticity is used too.
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• (2C) - Non-autocorrelation: Cov(εi, εj) = E {[εi − E[εi]][εj − E[εj ]]} =
0 for all i 6= j;

• (2D) - Normal distribution: each εi is normally distributed with zero
mean.

(2A) refers to the mean values of the disturbances, either conditional on
X or not. This property denotes exogeneity of X (in other words, X is an
exogenous variable), which has great importance in economic models, because
it corresponds to the fact that X is really an external variable, so its effect on
Y is ’pure’. On the other hand, assumption (2B) is called Homoscedasticity,
and it means that conditional variance is constant. When this assumption does
not hold, there is Heteroscedasticity (or Heteroskedasticity), which is a
definitely more complex case.

Here we are going to state some results to prove the correctness, or unbi-
asedness3 of the regression parameters under some of the above assumptions.
Basically, why do we use estimators achieved from the OLS method? We will
see that estimators α and β have very relevant properties. Suppose that the
following linear equation:

y = α∗ + β∗x+ ε

contains the best parameters to fit the scatter of points. The following results
are stated in the 2-variables case, but they can be easily extended to N variables.

Proposition 3. If assumptions (2A) and (2C) hold, then the estimators α given
by (2.1.7) and β given by (2.1.6) are unbiased, i.e.

E[α] = α∗, E[β] = β∗.

Proof. Firstly, let us calculate the expected value of β, with the help of the linear
regression equation:

E[β] = E

[∑N
i=1 xiyi −Nx · y∑N
i=1 x

2
i −Nx2

]
= E

[∑N
i=1 xi(α

∗ + β∗xi + εi)−Nx · (α∗ + β∗x)∑N
i=1 x

2
i −Nx2

]
=

= E

[
α∗
∑N

i=1 xi∑N
i=1 x

2
i −Nx2

+
β∗
∑N

i=1 x
2
i∑N

i=1 x
2
i −Nx2

+

∑N
i=1 xiεi∑N

i=1 x
2
i −Nx2

−N x · (α∗ + β∗x)∑N
i=1 x

2
i −Nx2

]
=

= E

[
α∗
∑N

i=1 xi −Nx∑N
i=1 x

2
i −Nx2

]
+ E

[
β∗
∑N

i=1 x
2
i −Nx2∑N

i=1 x
2
i −Nx2

]
+ E

[ ∑N
i=1 xiεi∑N

i=1 x
2
i −Nx2

]
.

3The word unbiased refers to an estimator which is ’on average’ equal to the real parameter
we are looking for, not systematically too high or too low.
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The second term is not random, hence E[β∗] = β∗, whereas the first one vanishes
because

∑N
i=1 xi = Nx. Consequently, we have:

E[β] = β∗ + E

[ ∑N
i=1 xiεi∑N

i=1 x
2
i −Nx2

]
.

Now, since the numerator of the second term is equal to
∑N

i=1 xiE[εi x], by the
Law of Iterated Expectations (see [1], Appendix B), it vanishes by assumption
(2A), hence E[β] = β∗.

Turning to α, we know from (2.1.7) that:

E[α] = E[y − β∗x] = E[y]− β∗E[x] = E[α∗ + β∗x]− β∗E[x] =

= E[α∗] + β∗E[x]− β∗E[x] = E[α∗] = α∗.

Clearly, the mean value is not the only important characteristic of the re-
gression parameters: as usually happens with random variables, the variance is
crucial as well. This means that in addition to being a correct estimator, param-
eter β must also have a low variance. We are going to introduce the following
result, also known as the Gauss-Markov Theorem, under the homoscedaticity
assumption:

Theorem 4. If the above assumptions hold, then β given by (2.1.6) is the estima-
tor which has the minimal variance in the class of linear and unbiased estimators
of β∗.

Proof. Suppose that another estimator b exists as a linear function of yi with
weights ci:

b =
N∑
i=1

ciyi =
N∑
i=1

ci(α+ βxi + εi) = α
N∑
i=1

ci + β
N∑
i=1

cixi +
N∑
i=1

ciεi.

In this case, since E[b] = β, necessarily

N∑
i=1

ci = 0,
N∑
i=1

cixi =
N∑
i=1

ci(xi − x) = 1.

Hence, we have that

b = β +

N∑
i=1

ciεi =⇒ V ar(b |x) = V ar

(
β +

N∑
i=1

ciεi | x

)
.
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We already know that

V ar(b | x) = σ2
N∑
i=1

c2i , V ar(β | x) =
σ2∑N

i=1(xi − x)2

(see [1], p. 99). Consider now the following sums:

N∑
i=1

w2
i =

1∑N
i=1(xi − x)2

,
N∑
i=1

wici =
1∑N

i=1(xi − x)2
.

We can note that:

V ar(b | x) = σ2
N∑
i=1

c2i = σ2
N∑
i=1

(wi + ci − wi)2 =

= σ2

[
N∑
i=1

w2
i +

N∑
i=1

(ci − wi)2 + 2

N∑
i=1

wi(ci − wi)

]
=

=
σ2∑N

i=1(xi − x)2
+ σ2

N∑
i=1

(ci − wi)2 = V ar(β | x) + σ2
N∑
i=1

(ci − wi)2,

consequently V ar(b | x) > V ar(β | x), i.e. β has the minimum variance.

Sometimes estimator β in (2.1.6) is indicated as the BLUE (Best Linear
Unbiased Estimator).

After discussing the properties of β, we should examine the distribution of
errors. Assumption (2D) establishes that each disturbance εi is normally dis-
tributed with 0 mean. At the present stage, we do not have any information on
σ2, i.e. the variance of β is still to be estimated. First, we have to come back to
the expression of the least squares residuals ei in N variables and apply (2.3.6):

e = Y −Xβ̂ = Y −X
(
XTX

)−1
XTY = (IM −X

(
XTX

)−1
XT )Y,

where IM is the usual M ×M identity matrix.
Now, call M = IM −X

(
XTX

)−1
XT the M ×M residual maker (see [1],

p. 71). We have that e =MY , furthermore, by construction:

MX = (IM −X
(
XTX

)−1
XT )X = X −X

(
XTX

)−1
(XTX) = X −XIN = 0,

i.e the null M ×N matrix. We know from the above identity that the residual
maker is also useful because

e =MY =M(Xβ + ε) =Mε.
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So an estimator of σ2 can be obtained from the sum of squared residuals:

eT e = (Mε)TMε = εTMTMε.

Before proceeding, we prove another key property of the residual maker:

MTM =
(
IM −X

(
XTX

)−1
XT
)T (

IM −X
(
XTX

)−1
XT
)

=

=

(
IM −X

((
XTX

)−1)T
XT

)(
IM −X

(
XTX

)−1
XT
)

=

= IM −X
((
XTX

)−1)T
XT −X

(
XTX

)−1
XT+

+X
((
XTX

)−1)T
XTX

(
XTX

)−1
XT =

= IM −X
((
XTX

)−1)T
XT −X

(
XTX

)−1
XT +X

((
XTX

)−1)T
XT =

= IM −X
(
XTX

)−1
XT =M.

Since MTM =M, we have that:

eT e = εTMε.

Borrowing a property of the trace of a matrix from Linear Algebra, we have:

tr(εTMε) = tr(MεεT ) =⇒ E[tr(εTMε) | X] = E[tr(MεεT ) | X].

Now we note that M can be taken out of the expectation, so that:

E[tr(MεεT ) | X] = tr(ME[εεT | X] = tr(Mσ2IM ) = σ2tr(M).

The trace of M can be calculated easily, using its properties:

tr(M) = tr(IM −X
(
XTX

)−1
XT ) = tr(IM )− tr(

(
XTX

)−1
XTX) = M −N.

Finally, we obtain that E[ete | X] = (M − N)σ2, and we are able to define an
unbiased estimator of σ2, which is called s2:

s2 =
eT e

M −N
. (2.4.1)

Note that E[s2] = σ2. The quantity (2.4.1) will be very useful in the testing
procedures. We will also call s the standard error of regression.
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To conclude this preliminary discussion on parameters, given the previous
assumptions and results, we can state that the distribution of β is the following:

β|x ∼ N
(
β∗, σ2(XTX)−1

)
, (2.4.2)

i.e. a multivariate normal distribution, meaning that each component of β is
normally distributed:

βk|x ∼ N
(
β∗k, σ

2(XTX)−1kk
)
. (2.4.3)

Finally, as far as s2 is concerned, we must remember that

E[s2 | x] = E[s2] = σ2.



Chapter 3

Maximum likelihood
estimation

The maximum likelihood estimation is one of the most important estimation
methods in Econometrics. It can be shown to be consistent and asymptotically
efficient under general conditions. Namely, the Maximum Likelihood Esti-
mator (MLE, from now on) of a value is the number that is ’most likely’ or
has the maximum likelihood of generating that specific value.

An MLE must be found by first deriving a likelihood function, for example
in a form such as L = L(θ, x1, . . . , xN ), where θ is the variable which characterizes
the population under consideration.

Let’s take into account the following worked example.

Example 5. Suppose that our population involves values of a discrete random
variable X having geometric probability distributions:

p(xi) = (1− θ)θxi ,

where xi is a random observation on X. Since observations are independent for
a random sample, we can write the probability of obtaining our N observations
as

L = p(x1) · p(x2) · · · · · p(xN ) = (1− θ)Nθx1+···+xN .
Typically, we prefer to take the logarithmic function of L rather than L itself,
to ease the subsequent calculations. Call l(·) = ln(L(·) the log-likelihood func-
tion. We have:

l(θ) = ln(L(θ)) = ln(1− θ) + x1 ln(θ) + · · ·+ ln(1− θ) + xN ln(θ) =

= N ln(1− θ) + ln(θ)

N∑
i=1

xi.

23
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Since l(θ) is maximized at the same value θ∗ as L(θ), we can take the FOC:

∂l

∂θ
= − N

1− θ
+

∑N
i=1 xi
θ

= 0 =⇒

=⇒ · · · =⇒ θ

(
1∑N
i=1 xi

+
1

N

)
=

1

N
=⇒

=⇒ θ∗ =

1

N
1∑N
i=1 xi

+
1

N

=

∑N
i=1 xi∑N

i=1 xi +N
. (3.0.1)

On the other hand, the following Example describes an analogous derivation,
when X is a continuous random variable distributed according to a Poisson
density having θ as its parameter.

Example 6. Call X a continuous random variable whose probability density
function is a Poisson distribution of the kind:

p(x) = θe−θx,

meaning that, as usual:

Pr{X ≤ x} = F (x) =

∫ x

−∞
θe−θtdt.

Also in this case, the likelihood function is

L(θ) =
N∏
i=1

p(xi) = θNe−θ(x1+···+xN ),

whereas the corresponding log-likelihood function is

l(θ) = ln(L(θ)) =

N∑
i=1

ln(θe−θxi) = N ln θ − θ
N∑
i=1

xi. (3.0.2)

Differentiating (3.0.2) with respect to θ, we obtain:

l′(θ) =
N

θ
−

N∑
i=1

xi = 0 =⇒ θ∗ =
N∑N
i=1 xi

=
1

x
,

where x is the usual arithmetic mean.
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3.1 Maximum likelihood estimation of regression pa-
rameters

Consider a regression line

yi = α+ βxi + εi,

where the disturbances εi have null mean values and their variance is the same
as yi, i.e. V ar(yi) = V ar(εi) = σ2, for all i = 1, . . . , N . The explained variables
yi are normally distributed and their mean values are given by

E[yi] = α+ βxi.

Hence, we can write the probability density function (p.d.f.) of each variable yi
as follows:

p(yi) =
1√

2πσ2
e−

(yi−α−βxi)
2

2σ2 .

Due to the classical assumptions, the disturbances εi are uncorrelated, normally
distributed, and independent of each other. This implies independence for yi as
well. Hence, the likelihood function will be the usual product of p.d. functions:

L(α, β, σ2) = p(y1) · · · · · p(yN ).

Taking the logarithm yields:

l(α, β, σ2) = ln(L(α, β, σ2)) = −N ln(2π)

2
− N ln(σ2)

2
− 1

2σ2

N∑
i=1

[yi − α− βxi]2.

Now the standard procedure to find α̃ and β̃ so as to minimize the sum of the
squares must be implemented, given the negative sign of the above expression.
Hence, the maximum likelihood estimators α and β are exactly the same as in
the OLS procedure. However, we have to calculate the FOC with respect to the
variance to determine the third parameter:

∂l

∂σ2
= − N

2σ2
+

1

2σ4

N∑
i=1

[yi − α− βxi]2 = 0,

leading to:

σ̃2 =

∑N
i=1[yi − α− βxi]2

N
=

∑N
i=1 e

2
i

N
. (3.1.1)

It is interesting to note that the same happens in the multivariate case.
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3.2 Confidence intervals for coefficients

Interval estimation is fundamental to identify the best estimate of a parameter
involving an explicit expression of its uncertainty. If we are to select an interval
for a parameter θ, we typically assume that it must be symmetric. This means
that, if we found the value θ̂, a suitable interval might be [θ̂− δ, θ̂+ δ], where δ
may be chosen equal to 0.01 or to 0.05, conventionally.

Remembering that by (2.4.2) and (2.4.3) we have that:

βk|x ∼ N
(
β∗k, σ

2Skk
)
,

where Skk is the k-th diagonal element of the matrix (XTX)−1. Therefore,
taking 95 percent (i.e., αc = 0.05) as the selected confidence level, we have that

−1.96 ≤
βk − β∗k√
σ2Skk

≤ 1.96

⇓

Pr
{
βk − 1.96

√
σ2Skk ≤ β∗k ≤ βk + 1.96

√
σ2Skk

}
= 0.95,

which is a statement about the probability that the above interval contains β∗k.
If we choose to use s2 instead of σ2, we typically use the t distribution. In

that case, given the level αc:

Pr
{
βk − t∗(1−αc/2),[M−N ]

√
s2Skk ≤ β∗k ≤ βk + t∗(1−αc/2),[M−N ]

√
s2Skk

}
= 1−αc,

where t∗(1−αc/2),[M−N ] is the appropriate quantile taken from t distribution. If
1− αc = 0.95, we obtain the confidence interval for each β∗k, i.e.

β∗k ∈
(
βk − 1.96

√
s2Skk, βk + 1.96

√
s2Skk

)
.



Chapter 4

Approaches to testing
hypotheses

There are several possible tests that are usually carried out in regression models,
in particular testing hypotheses is quite an important task to assess the validity
of an economic model. This Section is essentially based on Chapter 5 of Greene’s
book [1], which is suggested for a much more detailed discussion of this topic.

The first example proposed by Greene where a null hypothesis is tested con-
cerns a simple economic model, describing price of paintings in an auction. Its
regression equation is

lnP = β1 + β2 lnS + β3AR+ ε, (4.0.1)

where P is the price of a painting, S is its size, AR is its ’aspect ratio’. Namely, we
are not sure that this model is correct, because it is questionable whether the size
of a painting affects its price (Greene proposes some examples of extraordinary
artworks such as Mona Lisa by Leonardo da Vinci which is very small-sized).
This means that this is an appropriate case where we can test a null hypothesis,
i.e. a hypothesis such that one coefficient (β2) is equal to 0. If we call H0 the
null hypothesis on β2, we also formulate the related alternative hypothesis,
H1, which assumes that β2 6= 0.

The null hypothesis will be subsequently tested, or measured, against the
data, and finally:

• if the data are inconsistent with H0 with a reasonable degree of
certainty, H0 will be rejected.

• Otherwise, provided the data are consistent with H0, H0 will not
be rejected.

27
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Note that rejecting the null hypothesis means ruling it out conclusively, whereas
not rejecting it does not mean its acceptance, but it may involve further inves-
tigation and tests.

The first testing procedure was introduced by Neyman and Pearson (1933),
where the observed data were divided in an acceptance region and in a re-
jection region.

The so-called general linear hypothesis is a set of restrictions on the basic
linear regression model, which are linear equations involving parameters βi. We
are going to examine some simple cases, as are listed in [1] (Section 5.3):

• one coefficient is 0, i.e. there exists j = 1, . . . , N such that βj = 0;

• two coefficients are equal, i.e. there exist j and k, j 6= k, such that βj = βk;

• some coefficients sum to 1, i.e. (for example) β2 + β5 + β6 + β8 = 1;

• more than one coefficient is 0, i.e. (for example) β3 = β5 = β9 = 0.

Then there may be a combination of the above restrictions, for example we can
have that 2 coefficients are equal to 0 and other 2 coefficients are equal, and so
on. There can also be some non-linear restrictions, in more complex cases.

We will discuss the 3 main tests in the following Sections: the Wald Test,
the Likelihood Ratio (LR) Test, the Lagrange Multipliers (LM) test.

4.1 Hints on the main distributions in Statistics

We are going to recall two major distributions which are particularly helpful
when implementing the tests, especially regression analysis, analysis of variance,
and so on: the chi-squared or χ2 distribution with k degrees of freedom
and the Student’s t−distribution (or t-distribution).

Given k > 1 independent, normally distributed random variables Z1, . . . , Zp,
the sum of their squares is distributed according to the χ2 distribution with k
degrees of freedom, i.e

k∑
j=1

Z2
j ∼ χ2(k).

The p.d.f. of χ2(k) is the following one:

f(x; k) =



x
k
2
−1e−

x
2

√
2k · Γ

(
k

2

) if x > 0

0 otherwise

, (4.1.1)
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where Γ(·) is Euler’s (and Legendre’s) Gamma function, i.e.

Γ(z) =

∫ ∞
0

xz−1e−xdx,

for all z ∈ C \ Z−, and in particular, it is defined on positive integers as follows:

Γ(n) = (n− 1)!

for all n ∈ N.

The properties of χ2(k) are many, and they can be found on any Statistics
textbook. A particularly meaningful one is:

if X1, . . . , Xk are independent normally distributed random variables, such
that Xi ∼ N(µ, σ2), then:

k∑
i=1

(Xi −X)2 ∼ σ2χ2
k−1,

where X =
X1 + · · ·Xk

k
.

A key use of χ2 distributions concerns the F statistic, especially the con-
struction of the Fisher - Snedecor distribution F , which will be treated in
the last Section of the present Chapter.

On the other hand, Student’s t-distribution is quite important when the sam-
ple size at hand is small and when the standard deviation of the population is
unknown. The t-distribution is widely employed in a lot of statistical frame-
works, for example the Student’s t-test to assess the statistical significance of
the difference between two sample means, or in the linear regression analysis.

Basically, we assume to take a sample of p observations from a normal distri-
bution. We already know that a true mean value exists, but we can only calculate
the sample mean. Defining ν = p − 1 as the number of degrees of freedom of
the t-distribution, we can assess the confidence with which a given range would
contain the true mean by constructing the distribution with the following p.d.f.:

f(x; ν) =



Γ
(
ν+1
2

)(
1 +

x2

ν

)− ν+1
2

√
νπ · Γ

(ν
2

) if x > 0

0 otherwise

, (4.1.2)
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4.2 Wald Test

The Wald test is named after the statistician Abraham Wald. It can be used in
a number of different contexts to estimate the distance between the estimate θ̂
of a parameter (that is, its MLE) and the proposed value of the same parameter
θ0. Substantially, it is a ’significance test’, meaning that its principle is to fit the
regression without any restriction, and then assess whether the results seem to
agree with the hypothesis.

We begin from a very simple case, referring to the above example on art
market. Suppose that we want to test a null hypothesis H0: β2 = β02 , where β02
is the assumed value (in this case, zero) of the regression coefficient. We aim to
evaluate the Wald distance Wj of a coefficient estimate from its hypothesized
value:

Wj =
bj − β0j√
σ2Sjj

, (4.2.1)

where s2 is given by (2.4.1) and Sjj is the j-th diagonal element of the matrix
(XTX)−1. If we assume that E[βj ] = β0j , Wj is normally distributed. We can
call Wj = tj because it has a distribution with M −N degrees of freedom.

We first identify a confidence interval with which we would like to verify our
model, for example the standard value of 95%. So, we can state that it is unlikely
that a single value of tj falls outside the interval:

(−t∗(1−α/2),[M−N ], t
∗
(1−α/2),[M−N ]).

The null hypothesis H0 should be rejected if Wj is sufficiently large.
In Greene’s own words, since ’it is so unlikely that we would conclude that

it could not happen if the hypothesis were correct, so the hypothesis must be
incorrect’.

Back to the results in the previous Chapter, if we compute Wk using the
sample estimate of σ2, i.e. s2, we have:

tj =
bj − β0j√
s2Sjj

. (4.2.2)

The variable tj in the form (4.2.2) has a t distribution with M − N degrees of
freedom. The t ratio is the ratio between the estimator bj and its standard
error, so:

tj =
bj√
s2Sjj

can be used for tests. If it is larger than 1.96, this means that the coefficient is
significantly different from 0 at 95% confidence level, the null hypothesis should
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be rejected, so the related coefficient can be considered statistically signifi-
cant.

In the next Example we are going to deal with an econometric model derived
from a study by Mroz [2] (published in 1987 on Econometrica), corresponding
to Example 5.2 ([1], pages 156 − 157). It will be very useful to outline how to
read and understand the regression results in a Table.

Example 7. Consider the following regression equation which aims to investi-
gate the relation between married women’s earnings and other relevant data such
as their age, education and children:

ln(Earnings) = β1 + β2 ·Age + β3 ·Age2 + β4 ·Education + β5 ·Kids + ε. (4.2.3)

Note the presence of the same covariate in 2 different positions: Age is consid-
ered both in the linear and in the quadratic forms. This structure violates the
assumption of independence among covariates, but it justified by the well-known
effect of age on income, which has a parabolic concave behaviour over time. This
scenario is easily explained by the relation between wages and pensions, for ex-
ample. For this reason, we expect that the coefficient β2 is positive and that β3
is negative.

The number of observations is 428, corresponding to 428 white married women
whose age was between 30 and 60 in 1975, and consequently the number of de-
grees of freedom of the model is 428− 5 = 423. The following Table presents all
the results, including the t ratio:

Variable Coefficient Standard error t ratio

Constant 3.24009 1.7674 1.833

Age 0.20056 0.08386 2.392

Age2 −0.0023147 0.00098688 −2.345

Education 0.067472 0.025248 2.672

Kids −0.35119 0.14753 −2.38

To augment the above Table, we also know that the sum of squared residuals
SSE is 599.4582, that the standard error of the regression s is 1.19044, and that
R2 = 0.040995. In short, we can summarize the following:

• The t ratio shows that at 95% confidence level, all coefficients are statisti-
cally significant except the intercept, which is smaller then 1.96.

• The signs of all coefficients are consistent with our initial expectations: ed-
ucation affects earnings positively, the presence of children affects earnings
negatively. We can estimate that an additional year of schooling yields
6.7% increase in earnings.



32 CHAPTER 4. APPROACHES TO TESTING HYPOTHESES

• The age acts as an inverted U on earnings, i.e. β2 is positive and β3 is
negative. Specifically, the form of the age profile suggests that the peak of
earnings can be approximately found at 43 years of age.

4.3 The F statistic

The F test, or F statistic, is a way to test a hypothesis against another one, for
example the null hypothesis against the alternative hypothesis. We are going to
treat this fundamental test as easily as possible (for further reading and technical
details, see [1], 157− 161).

First, we should rigorously define the Fisher - Snedecor distribution: consider
2 random variables X and X̃, which are respectively distributed according to
the chi-squared distributions χ2(k) and χ2(l), having k and l degrees of freedom.
The Fisher - Snedecor distribution F(k, l) is the distribution of the random
variable

F =
X/k

X̃/l
.

Its p.d.f. is given by

f(x; k, l) =
1

xB(k/2, l/2)

√
kkllxk

(kx+ l)k+l
,

where B(·) is Euler’s Beta function, i.e.

B

(
k

2
,
l

2

)
=

∫ 1

0
t
k
2
−1(1− t)

l
2
−1dt,

which is connected to Gamma by the following identity:

B

(
k

2
,
l

2

)
=

Γ

(
k

2

)
Γ

(
l

2

)
Γ

(
k + l

2

) .

The mean value of such a random variable is
l

l − 2
for l > 2, and its variance is

2l2(k + l − 2)

k(l − 2)2(l − 4)
for l > 4.

To carry out the F test, we are going to assume that the 2 random variables
under consideration are normally distributed with variances σ2X and σ2

X̃
and
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observed standard errors s2X and s2
X̃

. Now, since the random variables

(k − 1)s2X
σ2X

and
(l − 1)s2

X̃

σ2
X̃

are respectively distributed according to χ2(k−1) and χ2(l−1), then the random
variable

F =
σ2
X̃

σ2X

s2X
s2
X̃

follows F(k − 1, l − 1).
The easiest way to use the F test in Econometrics can be described as follows.

First, we should also note that the F ratio quantifies the relationship between
the relative increase in the SSR and the relative increase in degrees of freedom
between 2 models. Call SSR1 and SSR2 the sums of squares of residuals of the
2 models, which respectively have p1 and p2 degrees of freedom. Model 1 is the
’simple’ model, whereas model 2 is ’complicated’. Clearly, we can take one of
the 2 models based on the null hypothesis and the remaining one based on the
alternative hypothesis, to test them against one another. We can also write:

F =
SSR1 − SSR2

SSR2

p2
p1 − p2

, (4.3.1)

under the assumption that model 1 is simpler then model 2, then it has a larger
SSR. What we expect is that if the more complicated model (2) is correct, the
following inequality holds:

SSR1 − SSR2

SSR2
>
p1 − p2
p2

,

which is equivalent to saying that if the F ratio (4.3.1) is smaller than 1, the
simpler model is the correct one. On the other hand, if (4.3.1) is larger than 1,
we can have 2 occurrences:

• either the more complicated model is the correct one;

• or the simpler model is the correct one, but the impression of a better fit
achieved by the more complicated model is caused by the random scatter.

In order to try to answer this question, we can employ the P value, which pro-
vides an assessment of the probability of this last case. Basically, this verification
works as follows:

• if the P -value is low, we can conclude that model 2 is significantly
better than model 1;
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• if the P -value is high, no evidence exists which supports model 2, so we
accept model 1.

To conclude with, a few explanatory words about the P-value, also known
as the asymptotic significance, which is the probability that, when the null
hypothesis is assumed to be true, a result is obtained which is equal or more
extreme than the one which is actually observed. Hence:

the smaller the P -value =⇒ the higher the significance =⇒

=⇒ the higher the probability that the null hypothesis does not
appropriately explain the scenario.

In other words, given a significance level αl selected by the investigator, if the
P -value is smaller than αl, the data are inconsistent with the null hypothesis, so
it must be rejected.

To conclude with, here is a very simple example to show how to use the
P -value.

Example 8. Suppose to flip a coin 7 times in a row. If the coin is fair, at every
flip we have the following trivial probabilities:

Prob {Outcome is Head} = Prob {Outcome is Tail} =
1

2
.

Assume the fairness of the coin as the null hypothesis, i.e.

Null hypothesis: the coin is fair.

Alternative hypothesis: the coin is unfair, or fixed.

Suppose that the P -value is calculated based on the total number of Heads ob-
tained, and that the confidence cutoff is 0.05.

If the researcher gets ’Head’ 7 times, the probability of such an event, provided
each flip of the coin is independent of the remaining flips, is

(1/2)7 = 0.0078 < 0.05,

that is the result is significant at this confidence level.
Therefore, the null hypothesis should be rejected. We conclude that a

very high probability exists that the coin is fixed.
On the other hand, if the researcher gets ’Head’ 4 times and ’Tail’ 3 times,

the probability of such an event is

7!

4!3!

1

27
= 0.2734375 > 0.05,

so this result is not significant. In this case, the null hypothesis can be
accepted.



Chapter 5

Dummy variables

The dummy variables (sometimes referred to as binary variables) are vari-
ables which can only be equal to 0 or to 1. They are typically employed when
a certain effect or situation occurs under some circumstances or in some periods
but not in other ones. They can be either summed in a regression equation or
multiplied by the explanatory variables, depending on the context at hand.

We have already encountered a dummy variable (i.e., kids) in the previous
Example 7, where the dummy intended to highlight the effect of possible presence
of children in the involved female population.

On the other hand, the following worked example is borrowed from basic
Microeconomics, and it can be useful for comprehension.

Example 9. Suppose that we are constructing the regression line to estimate the
quantity of ice creams consumed by the population in the 4 seasons. We consider
the following variables:

• Q: demanded quantity of ice creams;

• P : price of ice creams;

• E: total expenditure of consumers.

We can construct the linear relations with the help of a dummy variable in 2
ways: either additive or multiplicative.

In the additive case, the linear relation to be analyzed is:

Q = β1 + α1D + β2E + β3P + ε, (5.0.1)

where the regression parameters are β1, β2, β3, as usual. More than that, we have
a further dummy variable D, which is equal to 1 during summertime, when ice
creams are typically sold, and equal to 0 in the remaining 3 seasons. The dummy

35
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variable D is multiplied by a further regression parameter which is indicated by
α1 to highlight its difference with respect to the other ones. Finally, ε is the
usual disturbance. Passing to the expected values, we have 2 possible regression
equations:

E[Q] =

{
β1 + α1 + β2E + β3P during the summer

β1 + β2E + β3P in the remaining seasons
.

Clearly, the estimation of α1 can be carried out only in the first case.

A dummy variable can also be used as a multiplicative variable, by modifying
the linear equation (5.0.1) as follows, for example:

Q = β1 + β2E + α1ED + β3P + ε. (5.0.2)

In this case, in the period in which D = 1, its effect is not separated from the
other variables, because it ’reinforces’ the expenditure variable E. When D = 0,
the equation coincides with the one in the additive dummy case. The 2 regression
equations read as

E[Q] =

{
β1 + (β2 + α1)E + β3P during the summer

β1 + β2E + β3P in the remaining seasons
.

Further advanced details go beyond the scope of the present lecture notes.
As usual, for further explanation and technical details, I encourage students to
read [1], Chapter 6.
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